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Al diversity thrives

Health-cazre
institutions
are looking an
assortment of
technologies
to achieve
better health
outcomes, with
keen interest
in electronic-
health-recozrd
automation,
medical
imaging and
diagnostics,
and patient
data and zrisk
analytics.

Source: MIT Technology Review
Insights’ survey on Al in health
care of 908 health-care profes-
sionals in the US and UK, fall 2019
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40-807%

chest trauma patients having rib fractures [Lin, 2018]



Rib Fracture

X-ray

Cheap but less reliable (miss >85%) Expensive but more reliable (miss 20.5%)
[Cho, 2012]



Motivation 1: Al-assisted Diagosis

- Mortality rate of 20% for patients over 65 [Peek, 2020]

- Pose the risks of getting a collapsed lung or internal bleeding [Tignanelli,
2020]

- Poorest risk-adjusted outcomes [Macheel, 2020] g
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Motivation 2: Efficient Healthcare System
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Problem Definition

- Input
- High-Resolution Chest X-rays and Electronic Health Record (EHR)
- Positive/Negative Labels
- Output
- A predictive model for the new/incoming chest x-rays and EHR
- Objective
- High AUPRC (the area under the precision-recall curve) and High AUROC

The AUPRC is a useful performance metric for imbalanced data in a problem setting where you
care a lot more finding the positive examples.

- Constrains
- Fractures are usually in a small and elongated shape, which is more observable in CT

scans rather than 2D images such as x-rays.
- Computational constraints.



Data Preparation

This module ensures the quality of the input
data by removing data that is incorrectly
formatted. It detects the lung region on the
x-ray with a U-Net [Ronneberger, 2015] and
crops to that area before feeding into the
following submodules. From here, a Resnet-18
model is used to discard lateral view images, a
conditional-GAN [Mirza, 2014] is used to
discard other anomalous images, and the
label is double-checked against the database.
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CLAHE Transform [Saix, 2020]
Original
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Reason to use: 4% of AUPRC increase on rib fracture classification in CheXpert dataset.
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Dataset

Presence of N Age Median Male %
Rib Fracture (IQR:
25th-75th)
Train Positive 1,990 63 (51-77) 57.3%
Negative 11,097 57 (40-72) 47.0%
Validation Positive 272 62 (49-77) 60.7%
Negative 1,569 58 (41-72) 45.6%
Hold-out Test | Positive 551 62 (50-79) 55.0%
Negative 3,187 57 (40-72) 48.5%

Imbalance Ratio = 1:6 (reflecting the real-world distribution in clinical setting)



Image Model

Dense Block 2 Dense Block 3

i | |

Transition layers

A - Ii Classifier Weight Standardization
st>

Dense Block 1

.z

ndu
|
AUOD
AUOD
|
|[00d-BAy
AUOD
|
|[00d-BAy
|[00d-BAy

SRt '
Positives Negatives

Kernel Size




Image Model Results

Performance of Image Models
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Visualize Learned Features

The heatmaps generated from the
last activation layer of DenseNet121
using GradCAM++ [Chattopadhay,
2018]. The blue areas are the
regions of high responses (i.e., the
model pays attention in decision
making). The white area is where the
rib fracture is located, annotated by
a radiologist.




Tabular Model
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Tabular Model Results

AUROC
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AUPRC
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Multimodal Model
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Multimodal Model Results

0.8866~0.9232

0.8785~0.9165

0.9033~0.9343

0.8421~0.8818

0.0001~0.9271

0.6963~0.7381

AUROC AUPRC PPV Sens Spec NPV F1
Image-only |[0.77~0.80 0.42~0.46 0.28 0.80 0.64 0.95 0.41
EHR-only 0.90~0.92 0.64~0.68 0.48 0.83 0.84 0.97 0.61
Multimodal |[0.90~0.93 0.67~0.71 0.49 0.84 0.85 0.97 0.62
Internal Validation after running the Youden Index to decide
Ratio AUROC AUPRC the optimal threshold for binary prediction




Subgroup Analysis

N AUROC AUPRC
Gender
Male 1889 0.9157~0.9303 0.7297~0.7796
Female 1849 0.8773~0.9139 0.5749~0.6324
Race
White 3060 0.9040~0.9323 0.7008~0.7462
Black 375 0.7941~0.9146 0.1086~0.3172
Asian 85 0.8727~0.9468 0.6302~0.9053
Others 45 0.7617~0.9938 0.3540~0.6948




Delong Test

AUC-ROC
Test on Image-only Model Multimodal model P-value
Internal 0.7845 0.9146 0<0.05
EHR-only Model Multimodal model
Internal | 09099 . 09146 . 065 .
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